Activity patterns in the prefrontal cortex and hippocampus during and after awakening from etomidate anesthesia.
نویسندگان
چکیده
BACKGROUND The anesthetic properties of etomidate are largely mediated by gamma-aminobutyric acid type A receptors. There is evidence for the existence of gamma-aminobutyric acid type A receptor subtypes in the brain, which respond to small concentrations of etomidate. After awakening from anesthesia, these subtypes are expected to cause cognitive dysfunction for a yet unknown period of time. The corresponding patterns of brain electrical activity and the molecular identity of gamma-aminobutyric acid type A receptors contributing to these actions remain to be elucidated. METHODS Anesthesia was induced in wild-type and beta3(N265M) knock-in mice by intravenous injection of 10 mg/kg etomidate. Local field potentials were recorded simultaneously in the prefrontal cortex and hippocampus using chronically implanted electrode arrays. Local field potentials were sampled before, during, and after anesthesia. RESULTS In the prefrontal cortex and hippocampus of wild-type mice, intravenous bolus injection of etomidate evoked isoelectric baselines and subsequent burst suppression. These effects were largely attenuated by the beta3(N265M) mutation. During emergence from anesthesia, power density in the theta band (5-15 Hz) transiently increased in the hippocampus of wild types, but not in the mutants, indicating that this action was caused by the receptors harboring beta3 subunits. In both genotypes, etomidate produced a long-lasting (> 1 h after recovery of righting reflexes) decrease in theta-peak frequency. Significant slowing of theta activity was apparent in the hippocampus and prefrontal cortex. CONCLUSIONS Etomidate-induced patterns of brain activity during deep anesthesia mostly involve actions at beta3 containing gamma-aminobutyric acid type A receptors. During the postanesthesia period, altered theta-band activity indicates ongoing anesthetic action.
منابع مشابه
Effect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats
Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...
متن کاملP2: Neocortex and Memory
The human prefrontal cortex differs from all other mammals: the seat of complex cognition, abstract thinking, planning and future forecasting, and behavioral inhibition. Using our prefrontal cortex is a significant energy drain on the body, so despite its impressive capabilities, it’s daily capacity is limited. Some researchers estimate a mere 2-3 hours per day of activity depletes the pr...
متن کاملP28: The Effects of Omega-3 and 6 Fatty Acids on Hippocampus and Learning
One of the most nervous system evolution are memory and learning in humans. Learning is a skill that enhances synaptic activity in the hippocampus of prefrontal cortex. In fact, basic passive learning is communication between the conditioned and Unconditioned stimulation. Passive learning involves three steps: habit, education and remember. According to the results of investigations, the hippoc...
متن کاملThe Effects of L-arginine on the Hippocampus of Male Rat Fetuses under Maternal Stress
Introduction: Prenatal stress has deleterious effects on the development of the brain and is associated with behavioral and psychosocial problems in childhood and adulthood. This study aimed to determine the protective effect of L-arginine on fetal brain under maternal stress. Methods: Twenty pregnant Wistar rats (weighting 200-230 g) were randomly divided into 4 groups (n=5 for each group). T...
متن کاملHuman chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density
Objective(s): Amyloid β plaques, in Alzheimer’s disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 113 1 شماره
صفحات -
تاریخ انتشار 2010